-~ FROM FABRIC
TO FANTASTIC

HOW DBT MAKES LAKEHOUSES AND
WAREHOUSES SHINE

Sam Debruyn

Fabric Global Online Conference
September 2024

Who am |?

Sam Debruyn

. Heist-op-den-Berg, BE
" Consultant / Data & Cloud Architect
5 years in data
10 years in software / architecture / cloud

£2 dbt, Microsoft, modern data stack

Microsoft®
Most Valuable
Professional

dbt-fabric: a
guick lookback

OSS project (dbt adapter) created in
2019 to bring dbt support to SQL
Server & Azure SQL

Led maintenance on adapters for SQL
Server, Azure SQL, Synapse...

Worked with Microsoft to bring dbt to
Fabric

O microsoft /| db

<> Code () Issues 9

== dbt-fabric

2= [
AN

Giold Dot Warehouse Semantic Model
Laokehouse

Lakehouse/\Warehouse

‘\;\‘\[m\‘s‘t

Daota Warehouge Semantic Médel

Where does SQL fit in?

Different ways to transform data

Programming languages

Python and Scala. High learning curves and often creates a boundary between
business users and specialized engineers. Very powerful and easy to maintain.

Declarative languages

SQL, SAS, and the likes. Code is easy to write and understand but offers limited
flexibility and can be hard to maintain (adopting software eng. best practices).

Low-code / Ul-based

Easy to adopt, use, and achieve results. Very high vendor lock-in and limited
flexibility and modularity.

A guick survey done at local meetups

How would you rate these statements?

Strongly disagree

I know SQL I

Everyone in data knows SQL .

The average data practitiois can transform data using PySpark

The average data practitioner can transform data using Scala (e.g. Spark)

The average data practitioner can transform data usiai SQL

SQL is easy to use

SQL is flexible and allows me to build complex iato transformations

Strongly agree

How would you rate these statements?

Strongly disagree

I know SQL

—

Everyone in data knows SQL .

The average data prqctitioiir can transform data using PySpark

The average data practitioner can transform data using Scala (e.g. Spark)
2

The average data practitioner can transform data ui'ig SQL

SQL is easy to use .

SQL is flexible and allows me to build complex data transformations

Strongly agree

Programming languages 2023

Kotlin THP Bash/Shell (all shells)
B

Java \ co
" N

C/ \ HTML/CSS

Cw /

TypeScript | i

JavaScript

source: Stack Overflow
worked with / wants to

B, / work with
e Python

Rust

Th e CO m m O n Data architects Data engineers

ERWIN Informatica

la ngu age Of d aila Wherescape Matillion

tra nSfOrmathnS Analytics engineers Bl developers
s drag-and- e a

drop

Analysts

Excel / Sheets
Power Bl

The common
language of data
transformations
IS

Data architects

ERWIN
Wherescape
SQL

Data engineers

Informatica
Matillion
SQL

Analytics engineers

Alteryx
Talend

SQL

Bl developers
Tableau

Qlik

SQL

Analysts

Power Bl
SQL

Excel / Sheets

Introducing dbt

Open-source Python utility for
building data transformations
™

Free/OSS version: dbt Core / version
with all the bells & whistles
included: dbt Cloud

The de facto default tool for
analytics engineering

3 things to know

No compute

dbt requires a data warehouse to
function, it only sends SQL queries

SQL with Jinja

dbtis built for SQL, in some cases you
can also use Python

Free/self-hosted or cloud

dbt Core is free but requires
"plumbing" (e.g. an orchestrator)

dbt Cloud is paid, but will be cheaper
than building everything around it
manually

dbt adoption past 6 years

R

2017 2018 2019 2020 2021 2022

October 2023: 30000+ weekly active projects

{% set item types=["food", "drink"] %}
compute booleans as (

select
orders.*,

order_items_ summary.order_ cost,
order_items summary.order_ items subtotal,
order_items summary.count food items,
order_items summary.count drink items,
order_items summary.count order_ items,
{% for type in item types %}
case
when order_items_summary.count_{{ type }} ite
else 0
end as is_{{ type }} order
{% if not loop.last %},{% endif %}
{% endfor %}

from orders
left join

order_items summary
on orders.order_id = order_items summary.order_id

)

Modular development

Write transformations in separate
version-controlled files

SQL on steroids with Jinja: control
logic, loops

Customize and parametrize with
variables

Reusable code blocks with macros

Easy to follow DRY principles

Sources

__sources.yml

models

= O WK NGOV A WNRE

e e
W N

=
H

15
16
17
18

19
20
21

22
23
24

staging

version:

sources:

sources.yml

2

- name: ecom

schema: raw

description:

freshness:

warn_after:

count: 24
period: hour
tables:
Generate model

Ge

Ge

name: raw_customers
identifier: customers
description: One record per
nerate mode

name: raw_orders
identifier: orders
description: One record per
loaded_at_field: ordered_at
nerate mode

name: raw_items

identifier: items
description: Items included

Generate mode

name: raw_stores
identifier: stores
loaded_at_field: opened_at

E-commerce data for the Jaffle Shop

person who has purchased one or more items

order (consisting of one or more order items)

in an order

Manage data

sources and

monitor data

freshness

Sources :

stg_customers.sql (o]

models / staging / stg_customers.sql @

O 00 O U B WIN =

e Y
B W N RS

with source as (
select *
from {{ source('ecom', 'raw_customers') }}

)

renamed as (
select
id as customer_id,
name as customer_name
from source

)

select * from renamed

Dynamic schema
selection

Start tracking
lineage from the
source

Data lineage

‘ X ‘ .. / dbt-fabric-conf2024 ’ Q. search with selectors (e.g. model_name+) or press Enter to view full lineage @
drink_or... l | I I I
date_sp... | metricflow_ti... ‘ foodior 7 | orderigiussy
ecom.raw_... stg_locat... locations locations e f lOW Of d a t a
orders
large_or... [
ecom.raw_... stg_orders products I m p a Ct Of
new_custome...
orcers order_t. IT T : :I if i IT gg E
cumulative_r... y
L]
transformation
products
drink_reven...
ecom.raw_p... stg_prod... food_rev... H OW a
order_it... median_re... JENETE SLOR ° ° °
order_it... dllllellSIOIl/faCt IS
Lo food_reven...
count_lifetim...
customers custom... average_ord...
ecom.raw_cu... S(g_CLIStOH. “fe{ime'spen“'
ecom.raw_s... Stg_sup... ‘
supplies supplies

o
& Lenses rig Resource type Vv 1 M Model M Source M Snapshot M Seed ™ Metric M Semantic Model M Exposure

Data lineage '

Spot anc
detect bac
data model

design

0.28s]
'RUN]
in 0.29s]
in 24.56s
in 0.32s]
[RUN]

in 9.355] Data tests & unit tests

in 0.24s]

in 0.16s]

in 0.31s] Automated testing for your code, as
well as for your data

in 0.24s]

Tests can be integrated in other
tooling to get a good view on your
.50s] data quality

.15s]

:igi% Simple YAML- or SQL-based syntax

.345s] to define tests
.37s]
.48s]
.43s]
.32s]
.50s]

PR RRPRRPRRPROS

Documentation -
and tests

customers.yml (o]

models / marts / customers.yml

1 models:

2 - name: customers

3 description: Customer overview data mart, offering key details for each unique customer. One row per customer.
4 tests:

5 - dbt_utils.expression_is_true:

6 expression: "lifetime_spend_pretax + lifetime_tax_paid = lifetime_spend"

7 columns:

8 - name: customer_id

9 description: The unique key of the customers mart.

10 tests:

11 - not_null

12 - unique

13 - name: customer_type

14 description: Options are 'new' or 'returning', indicating if a customer has ordered more than once or has only placed their first order to date.
15 tests:

16 - accepted_values:

17 values: ["new", "returning"]

18

dbt docs

dbt-fabric-conf2024

Q_ Search for resources and columns

Project details

= Overview

|~ Performance

QO Recommendations

Resources File tree

@ Models
B Sources

Tests

Q

Exposures

oo
oo

Groups

Metrics

Semantic Models
Seeds

Macros

b ®m w & E

Snapshots

Database

14

27

19

732

Dataroots (Partner) / dbt-fabric-conf2024 / Models / customers

@ customers [m o,:enmme} [@ ShareJ

@ Last run Sep 8,2024,2:10 PM CEST BB View

General Code Columns NEW Performance Recommendations 0

Q_ Search for columns

> customer_id VARCHAR

The unique key of the orders mart.

© NoT NuLL

© uNIQUE

> customer_name VARCHAR

Customers' full name.

> count_lifetime_orders INT

Total number of orders a customer has ever placed.

> first_ordered_at DATE

The timestamp when a customer placed their first order.

> last_ordered_at DATE

The timestamp of a customer's most recent order.

N

Clear convention-
based data
documentation

Good step-up to a
data catalog

dbt packages: don’t
reinvent the wheel

Similar to libraries in software
development

Benefit from global knowledge by
using pre-built common data
transformations and data modelling
techniques

Share publicly or privately within
your organization

Can contain models
(transformations), macros, tests, ...

Date dimension in 1 line

models / marts / date_dimension.sql @ Save
1 {% set sql_stmt %} ===
2 select {{ dateadd(datepart="year", interval=1, from_date or_timestamp=current_timestamp()) }} as val
3 {% endset %} B
4 {{ dbt_date.get_date_dimension('2017-01-01', dbt_utils.get single value(sql_stmt)) }}
[B8 Preview] [</> Compile] [ﬂ Build | v] [Format] Results Code quality Compiled code Lineage
15.2s | Results limited to 500 rows.® Change row display Download CSV
date_day prior_date_day next_date_day prior_year_date_day prior_year_over_year... day_of_week day_of_week_iso day_of_week_ &
2017-01-01 2016-12-31 2017-01-02 2016-01-01 2016-01-03 1 7 Sunday .
2017-01-02 2017-01-01 2017-01-03 2016-01-02 2016-01-04 2 1 Monday
2017-01-03 2017-01-02 2017-01-04 2016-01-03 2016-01-05 3 2 Tuesday
2017-01-04 2017-01-03 2017-01-05 2016-01-04 2016-01-06 4 3 Wednesday
2017-01-05 2017-01-04 2017-01-06 2016-01-05 2016-01-07 5 4 Thursday

2017-01-06 2017-01-05 2017-01-07 2016-01-06 2016-01-08 6 5 Friday

Implement SCD with snapshots
Incremental loads

Hooks & operations Wi, b,

Run Python models through Spark (coming soon on Fabric)
Manage access with grants

Track dataset usage in Bl & ML with exposures £
Data contracts ,,, ;

A\

=2 Starburst @» DuCkDB MuySCL

Accomplish great things

Version controlled and reproducible

ﬁ Collaboration within the team & other teams

Built-in docs & lineage

&J Know and understand your data

Test code & data
& Deploy & run with confidence

Modular & easy to use

4 Easy to extend and maintain

Your next

steps

dbt Community: over 100K
members

Active and helpful Slack channels

A lot of development in the open-
source space

Local meetups all over the world

learn.getdbt.com: free courses to
get started with dbt

5 Questions?

sam@debruyn.dev +

https://debruyn.dev

